![]() Image data synchronizing apparatus and method
专利摘要:
One frame of an image having 1312 pixels in the horizontal direction thereof is divided into 192 pixels at a time in the horizontal direction to obtain a plurality of image areas. The one frame of image data is subjected to synchronization processing repeatedly using a line memory that is capable of storing 192 pixels of data. 公开号:US20010004272A1 申请号:US09/736,413 申请日:2000-12-15 公开日:2001-06-21 发明作者:Kenkichi Hayashi 申请人:Fuji Photo Film Co Ltd; IPC主号:H04N5-04
专利说明:
[0001] 1. Field of the Invention [0001] [0002] This invention relates to an apparatus and method for synchronizing and outputting image data. [0002] [0003] 2. Description of the Related Art [0003] [0004] When image processing is executed using a portion of an image composed of a plurality of horizontal lines of an image of one frame, as in the manner of digital filtering processing, it is necessary to store temporarily one horizontal line's worth of image data using a line memory and to execute synchronization processing. Image processing is executed using the one line's worth of image data that has been stored temporarily in the line memory and the succeeding line of image data, which has not been directed through the line memory. [0004] [0005] CCDs having greater numbers of pixels are being produced, and the number of pixels on one horizontal line has become extremely high. The inevitable outcome is an increase in the capacity of the line memory that stores one horizontal line's worth of data. There is an increase also in the cost of the line memory and in the power consumed by the line memory itself. [0005] DISCLOSURE OF THE INVENTION [0006] Accordingly, an object of the present invention is to realize the synchronization processing of image data without increasing the capacity of a line memory. [0006] [0007] According to the present invention, the foregoing object is attained by providing an image data synchronizing apparatus comprising an extraction device for extracting one horizontal line of image data in a plurality of image areas, which are obtained when one frame of an image has been divided in the horizontal direction, on a per-image-area basis from applied image data representing one frame of the image; and a line memory for storing temporarily the image data that has been extracted by the extraction device, the line memory having a capacity for an amount of data approximately equal to that of the one horizontal line of image data in each image area. [0007] [0008] The present invention provides also a method suited to the apparatus described above. Specifically the method comprises the steps of: extracting one horizontal line of image data in a plurality of image areas, which are obtained when one frame of an image has been divided in the horizontal direction, on a per-image-area basis from applied image data representing one frame of the image; storing the extracted image data temporarily in a line memory having a capacity for an amount of data approximately equal to that of the one horizontal line of image data in each image area; and outputting the image data from the line memory. [0008] [0009] In accordance with the present invention, one line's worth of image data in a plurality of image areas, which are obtained when one frame of an image has been divided in the horizontal direction, is extracted on a per-image-area basis from applied image data representing one frame of the image. The extracted image data is stored temporarily in the line memory and is then output from the line memory. [0009] [0010] Thus the extracted item of image data and the item of image data that has been stored temporarily in the line memory and read out of the line memory are obtained simultaneously. [0010] [0011] According to the present invention, it will suffice if the capacity of the line memory that stores the image data is large enough to store one line's worth of image data of one image area. Since it is unnecessary to store one horizontal line of image data of one entire frame of an image, the capacity of the line memory can be reduced. This means that even if the CCD for obtaining the image data is provided with a large number of pixels, synchronization processing can be achieved using a line memory having a small capacity. [0011] [0012] An arrangement may be adopted in which the mutually adjacent portions of neighboring image areas are overlapped. [0012] [0013] Other features and advantages of the present invention will be apparent from the following description taken in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the figures thereof. [0013] BRIEF DESCRIPTION OF THE DRAWINGS [0014] FIG. 1 illustrates the photoreceptor area of a CCD and image areas into which the photoreceptor area has been partitioned; [0014] [0015] FIG. 2 illustrates the electrical construction of a synchronizing circuit; and [0015] [0016] FIG. 3 illustrates part of the electrical structure of a digital camera. [0016] DESCRIPTION OF THE PREFERRED EMBODIMENT [0017] A preferred embodiment of the present invention will now be described in detail. [0017] [0018] The manner in which synchronization processing is executed will be described first. [0018] [0019] FIG. 1 is a diagram illustrating the photoreceptor area of a CCD [0019] 1. [0020] The CCD [0020] 1 has 1312 pixels in the horizontal direction and 1026 pixels in the vertical direction, for a total of about 1,350,000 pixels. Assume that there are a plurality of image areas 20 obtained when the photoreceptor area of the CCD 1 is divided into areas of 192 pixels each in the horizontal direction. When the division into 192 pixels in the horizontal direction is performed, the image areas 20 are demarcated in such a manner that neighboring image areas overlap each other by 32 pixels (=16 pixels×2) in the horizontal direction (the overlapping portions of 32 pixels are indicated at 20B). [0021] Each image area [0021] 20 obtained by division into 192 pixels horizontally has a central image area 20A (indicated by the hatching) composed of 160 pixels horizontally obtained by excluding 16 pixels along both edges. The image data representing the image area 20A is subjected to data processing that will be described later. [0022] FIG. 2 is a block diagram illustrating the electrical construction of a synchronizing circuit [0022] 30. [0023] One horizontal line (192 pixels) of image data of the image area [0023] 20 obtained by division as set forth above is input to the synchronizing circuit 30. This one horizontal line of image data enters a first line memory 31 for 192 pixels, where this one horizontal line of image data is stored temporarily. [0024] The one horizontal line of image data that has been stored in the first line memory [0024] 31 forms part of the output of the synchronizing circuit 30 and is input to a processing unit 33, which is the stage that immediately follows the synchronizing circuit 30. The image data that has been output from the first line memory 31 is input also to a second line memory 32 for 192 pixels, where this image data is stored temporarily. Image data output from the second line memory 32 also forms part of the output of the synchronizing circuit 30 and is input to the processing unit 33. [0025] The image data that has entered the synchronizing circuit [0025] 30 also is output from the synchronizing circuit 30 merely by passing therethrough. [0026] The synchronizing circuit [0026] 30 outputs the present image data of 192 pixels, image data delayed from the present image data by one horizontal line in the image area 20, and image data delayed from the present image data by two horizontal lines in the image area 20. These items of image data enter the processing unit 33, which proceeds to apply predetermined processing to 160 pixels of image data corresponding to the image area 20A. [0027] The synchronization processing by the synchronizing circuit [0027] 30 is repeatedly applied to the image data representing one frame of the image. [0028] The size of the portion [0028] 20B at which the neighboring image areas 20 overlap each other may be changed in conformity the content of processing executed by the processing unit 33 on the output side of the synchronizing circuit 30. [0029] FIG. 3 is a block diagram illustrating the electrical structure of a digital camera. [0029] [0030] Synchronizing circuits [0030] 4, 6, 8, 10 and 12 in FIG. 3 each have a structure identical with that of the synchronizing circuit 30 illustrated in FIG. 2. [0031] Image data representing the image of a subject is output from the CCD [0031] 1 in response to imaging of the subject. One frame of the image data output from the CCD 1 enters a signal processing circuit 2, where the image data is subjected to predetermined signal processing such as analog-to-digital conversion processing, gamma correction processing and the like. The one frame of image data output from the signal processing circuit 2 is applied to a frame memory 3, where the data is stored temporarily. [0032] Image data representing the image area [0032] 20A obtained by dividing one frame of an image into the image areas 20A is read out one line at a time (192 pixels at a time) by addressing the frame memory 3. The image data that has been read out of the frame memory 3 is input to the synchronizing circuit 4. [0033] Image data that has been synchronized in the synchronizing circuit [0033] 4 is input to a circuit 5, which creates luminance data and color difference data from the entered image data. [0034] The luminance data is applied to the synchronizing circuit [0034] 6, which executes synchronization processing again. The luminance data output from the synchronizing circuit 6 enters a luminance-data low-pass filter 7, where the data is subjected to filtering processing. The luminance data is subjected to synchronization processing again in the synchronizing circuit 8 and is then input to a contour correction circuit 9. Here the data is subjected to contour correction processing, after which the processed data is output. [0035] The color difference data that has been created in the circuit [0035] 5 is synchronized by the synchronizing circuit 10 in a manner similar to that of the luminance data and then is input to a low-pass filter 11 for color difference data. The color difference data is synchronized again in the synchronizing circuit 12 again and then enters a hue correction circuit 13. The latter subjects the color difference data to hue correction processing and outputs the processed signal. [0036] The luminance data output from the contour correction circuit [0036] 9 and the color difference data output from the hue correction circuit 13 is subjected to compression processing and the compressed data is recorded on a memory card or the like. [0037] Thus, synchronization processing can be executed using a line memory which stores fewer pixels (192 pixels) than the number of pixels (1312 pixels) in the horizontal direction of the CCD [0037] 1. [0038] Although the foregoing embodiment has been described with regard to an example applied to a digital camera, the present invention is no way limited to application solely to a digital camera. [0038] [0039] As many apparently widely different embodiments of the present invention can be made without departing from the spirit and scope thereof, it is to be understood that the invention is not limited to the specific embodiments thereof except as defined in the appended claims. [0039]
权利要求:
Claims (3) [1" id="US-20010004272-A1-CLM-00001] 1. An image data synchronizing apparatus comprising: an extraction device for extracting one horizontal line of image data in a plurality of image areas, which are obtained when one frame of an image has been divided in the horizontal direction, on a per-image-area basis from applied image data representing one frame of the image; and a line memory for storing temporarily the image data that has been extracted by said extraction device, said line memory having a capacity for an amount of data approximately equal to that of the one horizontal line of image data in each image area. [2" id="US-20010004272-A1-CLM-00002] 2. The apparatus according to claim 1 , wherein said extraction device extracts one horizontal line of image data of an image area a portion of which is overlapped by a neighboring image area. [3" id="US-20010004272-A1-CLM-00003] 3. An image data synchronization method comprising the steps of: extracting one horizontal line of image data in a plurality of image areas, which are obtained when one frame of an image has been divided in the horizontal direction, on a per-image-area basis from applied image data representing one frame of the image; storing the extracted image data temporarily in a line memory having a capacity for an amount of data approximately equal to that of the one horizontal line of image data in each image area; and outputting the image data from the line memory.
类似技术:
公开号 | 公开日 | 专利标题 US6965395B1|2005-11-15|Methods and systems for detecting defective imaging pixels and pixel values EP0472299B1|1997-10-01|Image detection apparatus EP0508607B1|1998-08-05|Electronic still camera JP2000236473A|2000-08-29|Image processing circuit for image input device US20020039143A1|2002-04-04|Image processing circuit EP0574901A2|1993-12-22|Image signal processor JP2942903B2|1999-08-30|Digital camera signal processor US20040141068A1|2004-07-22|Images combination processing system, images combination processing method, and images combination processing program JP2004260265A|2004-09-16|Pixel extracting circuit having pixel turning over function, and image pickup apparatus US6762799B2|2004-07-13|Image data synchronizing apparatus and method EP2214136B1|2012-10-10|Method and program for controlling image capture apparatus EP0577392B1|1998-09-16|High definition image processing apparatus using standard signal processor US6803947B1|2004-10-12|Video camera using mixed-line-pair readout, taking still pictures with full vertical resolution US8026952B2|2011-09-27|Image capturing device with reduced-sized sub-image collection and an image processing method thereof JP2002232751A|2002-08-16|Display device, display method and electronic camera JP4001762B2|2007-10-31|Imaging apparatus and imaging method US5229859A|1993-07-20|Image pickup apparatus for full line reading JP3733182B2|2006-01-11|Imaging apparatus and vertical stripe removal method JPH06105224A|1994-04-15|Dynamic range expansion device US6266101B1|2001-07-24|Y/C separator JP3890095B2|2007-03-07|Image processing device JP4181655B2|2008-11-19|Image processing apparatus, image processing method, and computer-readable storage medium JP3893489B2|2007-03-14|Signal processing apparatus and signal processing method JP3791044B2|2006-06-28|Video signal processing circuit and video camera having the same JP4515546B2|2010-08-04|Image signal processing apparatus and electronic still camera equipped with the apparatus
同族专利:
公开号 | 公开日 JP4105351B2|2008-06-25| JP2001177737A|2001-06-29| US6762799B2|2004-07-13|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US5029326A|1989-08-08|1991-07-02|Pioneer Electronic Corporation|Picture display system| US5166801A|1989-11-22|1992-11-24|Nec Corporation|Large size display apparatus for high definition television| US5136390A|1990-11-05|1992-08-04|Metavision Corporation|Adjustable multiple image display smoothing method and apparatus|US20050275732A1|2004-06-15|2005-12-15|Yoshitaka Takeuchi|Image capturing apparatus, image capturing method, and program| JP2004289631A|2003-03-24|2004-10-14|Fuji Photo Film Co Ltd|Digital camera| JP2004312072A|2003-04-02|2004-11-04|Matsushita Electric Ind Co Ltd|Image processing device, camera, and image processing method| KR100618270B1|2005-03-31|2006-09-06|엘지전자 주식회사|Method for reading data by scaler unit for screen image division of video display apparatus| US7859720B2|2006-11-13|2010-12-28|Canon Kabushiki Kaisha|Image forming apparatus and method thereof| JP2010219807A|2009-03-16|2010-09-30|Panasonic Corp|Image processing device and image processing method| JP5815390B2|2011-12-08|2015-11-17|ルネサスエレクトロニクス株式会社|Semiconductor device and image processing method|
法律状态:
2000-12-15| AS| Assignment|Owner name: FUJI PHOTO FILM CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAYASHI, KENKICHI;REEL/FRAME:011371/0225 Effective date: 20001201 | 2007-02-15| AS| Assignment|Owner name: FUJIFILM HOLDINGS CORPORATION, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:FUJI PHOTO FILM CO., LTD.;REEL/FRAME:018898/0872 Effective date: 20061001 Owner name: FUJIFILM HOLDINGS CORPORATION,JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:FUJI PHOTO FILM CO., LTD.;REEL/FRAME:018898/0872 Effective date: 20061001 | 2007-02-26| AS| Assignment|Owner name: FUJIFILM CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJIFILM HOLDINGS CORPORATION;REEL/FRAME:018934/0001 Effective date: 20070130 Owner name: FUJIFILM CORPORATION,JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJIFILM HOLDINGS CORPORATION;REEL/FRAME:018934/0001 Effective date: 20070130 | 2007-12-21| FPAY| Fee payment|Year of fee payment: 4 | 2012-02-27| REMI| Maintenance fee reminder mailed| 2012-07-13| LAPS| Lapse for failure to pay maintenance fees| 2012-08-13| STCH| Information on status: patent discontinuation|Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 | 2012-09-04| FP| Expired due to failure to pay maintenance fee|Effective date: 20120713 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 JP11-355569||1999-12-15|| JP35556999A|JP4105351B2|1999-12-15|1999-12-15|Image data synchronization apparatus and method| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|